

Determination of fat and fatty acids profile in coffee pulp *Coffea arabica*

Katarína Poláková; Alícia Bobková*; Alžbeta Demianová; Marek Bobko; Judita Lidiková; Andrea Mesárošová; Lukáš Jurčaga

Institute of Food Sciences, Slovak University of Agriculture, Nitra, Slovakia

*Corresponding author: alica.bobkova@uniag.sk

Coffee cherry pulp is a by-product obtained during green coffee beans production. The coffee cherry pulp contains considerable amounts of bioactive chemical compounds. This research aimed to determine the chemical parameters (polyunsaturated fatty acids, monounsaturated fatty acids, saturated fatty acids, ratio $\Sigma n3/\Sigma n6$, ratio $\Sigma n6/\Sigma n3$ and fat) in samples of Coffee cherries *Coffea arabica* from Columbia (sample A1) Panama (sample B1) Costa Rica (sample C1). All samples were post-harvest processing by dry method. The altitude analyzed samples were in the range of 1100 - 1760 mamsl. Fat was extracted from the lyophilized samples using Soxhlet extraction with petroleum ether. The PUFA, MUFA, SFA, ratio $\Sigma n3/\Sigma n6$, ratio $\Sigma n6/\Sigma n3$, and fat content were expressed as % of dry matter. Obtained data were analyzed using the XLSTAT. ANOVA analysis with Duncan and REGWQ tests were used. The results of this study show that was observed significant differences in parameters PUFA, MUFA, ratio $\Sigma n3/\Sigma n6$, ratio $\Sigma n6/\Sigma n3$, and fat. The ratios of $\Sigma n3/\Sigma n6$ and $\Sigma n6/\Sigma n3$ are discussed concerning their significance for human health, suggesting that coffee cherry pulp could potentially contribute to a balanced diet and improved nutrition. A significant amount of ratio $\Sigma n3/\Sigma n6$ was observed in sample A1 (0,845) and on the other hand lowest values were observed in sample B1 (0,471). The next group is the ratio of $\Sigma n6/\Sigma n3$ which is significant for sample C1 (2,577). The lowest value of fat was determined in sample C1 (0,645) from Costa Rica on the other hand highest value was determined in sample A1 (0,914). The sample from Columbia (A1) had the highest value of MUFA (17,942) and SFA (41,864) but a significant amount of PUFA was observed in sample C1 from Costa Rica in the amount of 50,191. Based on our results we can say that Coffee Cherry and her incorporation, after adjustment, into the global diet may contribute to nutrition security, the sustainability of the coffee sector, and human health. This study and its results bring information on the potential health benefits and sustainability implications of incorporating coffee cherry pulp into the diet.

ID	PUFA	MUFA	SFA	$\Sigma n3/\Sigma n6$	$\Sigma n6/\Sigma n3$	Fat
A1	40,206 b	17,942 a	41,864 a	0,845 a	1,193 c	0,914 a
C1	50,191 a	10,302 b	39,240 a	0,386 b	2,577 a	0,645 b
B1	46,516 ab	7,323 c	39,494 a	0,471 b	1,928 b	0,419 c
Pr > F(Model)	0,038	<0,0001	0,475	0,002	0,001	<0,0001
Significant	Yes	Yes	No	Yes	Yes	Yes

Fig.1. ANOVA

CONCLUSION

The research investigated the chemical parameters of coffee cherry pulp from different origins, emphasizing its potential health benefits and sustainability implications. Significant variations were found in polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), saturated fatty acids (SFA), and fat content among samples from Colombia, Panama, and Costa Rica. The ratios of $\Sigma n3/\Sigma n6$ and $\Sigma n6/\Sigma n3$ were highlighted for their significance in human health, with sample A1 showing the highest $\Sigma n3/\Sigma n6$ ratio and sample C1 demonstrating the highest $\Sigma n6/\Sigma n3$ ratio. Moreover, sample C1 exhibited a notable amount of PUFA. These findings suggest that incorporating coffee cherry pulp into the diet could contribute to balanced nutrition and health improvement. Additionally, such utilization may enhance the sustainability of the coffee sector while ensuring nutrition security.

1. Murthy P.S., Naidu M.M. Sustainable management of coffee industry by-products and value addition—A review. *Resour. Conserv. Recycl.* 2012;66:45–58. doi: 10.1016/j.resconrec.2012.06.005.
2. Iriondo-DeHond A., Aparicio García N., Fernandez-Gomez B., Guisantes-Batan E., Velázquez Escobar F., Blanch G.P., Velázquez Escobar M.I., Sanchez-Fortun S., del Castillo M.D. Validation of coffee by-products as novel food ingredients. *Innov. Food Sci. Emerg. Technol.* 2019;51:194–204. doi: 10.1016/j.ifset.2018.06.010.

Acknowledgments: This research was supported by The project „FOOD Quality in Digital Age“ (Grant no. 222300075) is co-financed by Governments of Czechia, Hungary, Poland and Slovakia through Visegrad Grants from International Visegrad Fund.